Structure-function correlations derived from faster variants of a RNA ligase deoxyribozyme.

نویسندگان

  • Tracey K Prior
  • Daniel R Semlow
  • Amber Flynn-Charlebois
  • Imran Rashid
  • Scott K Silverman
چکیده

We previously reported the in vitro selection of several Mg2+-dependent deoxyribozymes (DNA enzymes) that synthesize a 2'-5' RNA linkage from a 2',3'-cyclic phosphate and a 5'-hydroxyl. Here we subjected the 9A2 deoxyribozyme to re-selection for improved ligation rate. We found two new DNA enzymes (7Z81 and 7Z48) that contain the catalytic core of 7Q10, a previously reported small deoxyribozyme that is unrelated in sequence to 9A2. A third new DNA enzyme (7Z101) is unrelated to either 7Q10 or 9A2. The new 7Z81 and 7Z48 DNA enzymes have ligation rates over an order of magnitude higher than that of 7Q10 itself and they have additional sequence elements that correlate with these faster rates. Our findings provide insight into structure-function relationships of catalytic nucleic acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'.

Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a fa...

متن کامل

Optimization and generality of a small deoxyribozyme that ligates RNA.

In vitro evolution was previously used to identify a small deoxyribozyme, 7Q10, that ligates RNA with formation of a 2'-5' phosphodiester linkage from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. Ligation occurs in a convenient "binding arms" format analogous to that of the well-known 10-23 and 8-17 RNA-cleaving deoxyribozymes. Here, we report the optimization and generality of 7Q10 as a 2...

متن کامل

The secondary structure and sequence optimization of an RNA ligase ribozyme.

In vitro selection can generate functional sequence variants of an RNA structural motif that are useful for comparative analysis. The technique is particularly valuable in cases where natural variation is unavailable or non-existent. We report the extension of this approach to a new extreme--the identification of a 112 nt ribozyme secondary structure imbedded within a 186 nt RNA. A pool of 10(1...

متن کامل

Bioinformatics Designing of 10-23 Deoxyribozyme against Coding Region of Beta-galactosidase Gene

Background: Deoxyribozymes (Dzs) can play a role as gene expression inhibitors at mRNA level. Among Dzs, the 10-23 deoxyribozyme has significant potentials for treatment of diseases. Designed Dz includes a catalytic core made of 15 deoxyribonucleotides and two binding arms consisted of 6-12 nucleotides for site specific binding to target RNA and hydrolysis. The enzyme has characteristic feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2004